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Abstract: In This paper we illustrate new methods of online nonlinear estimation
applied to the lateral deflection of an elastic beam from on board measurements
of angular rates and angular accelerations. We contrast the development of the
filter equations, together with practical issues of their numerical solution as devel-
oped from global linearization by nonlinear output injection with the usual method
of the the extended Kalman filter(EKF).We show how nonlinear estimation due
to gyroscopic coupling can be implemented as an adptive covariance filter using
off-the-shelf Kalman filter alghorithms. The effect of the global linearization by
nonlinear output injection is to introduce a change of coordinates in which only
the process noise covariance is to be updated in online implementation. This is in
contrast to the computational approach which arises in EKF methods arising by
local linearization with respect to the current conditional mean. We also highlight
processing refinements for nonlinear estimation based on optimal ,nonlinear inter-
polation between observations. In these methods the extrapolation of the process
dynamics between measurement updates is obtained by replacing a transition ma-
trix with an operator spline that is optimized off-line from responses to selected
test inputs .
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1 Introduction

In this paper, a new nonlinear, nonparametric method is proposed for off-
line modeling and on-line estimation of nonlinear dynamic systems. For
illustration, it is applied to the estimation of the deformation of an elastic
structure,undergoing rapid rotational maneuvers.

In these circumstances,the structural stiffness and damping coefficients
depend on the angular acceleration w,the angular rate w and the square of
the angular rate .In the single axis case,the excitation of the structure is
represented by the vector uT = (w,w?,2w),to which the structural dynam-
ics responds as a "bilinear”( i.e., parametrically excited) system. A similar
technique for multiaxial rotations yields a bilinear model with respect to
matrix valued excitations.

Two methods of estimation and modeling are combined to achieve de-
formation state determination:

¢ A method based on a feedback linearized procedure which gives an esti-
mate by a filter constructed from the equivalent linear dynamics,which
is faster than the extended Kalman filter.

¢ The modeling of the deformation state of the structure by means of a
Volterra series interpolator.

2 Simplified Model of a Deformable Structure and Equations
of Motion

For purposes of illustration of the principles involved,the structure will con-
sist of a primary mirror, attached to a spacecraft (containing the hardware
of the slewing controller),and a secondary mirror attached to the central
one in the shape of a Cassegrain telescope by means of massless links.The
primary mirror structure will also be regarded as attached to the spacecraft
by means of a massless link. Equivalently the same model can be thought to
represent a laser beam expander,as in Figure 1 . More realistic models, such
as in (1] or [2], exibit the same form of interaction between the rotational
and vibrational dynamics. The simplified telescope part of the structure
can itself be modeled as a system of two masses attached together by a sin-
gle "equivalent” link,with "equivalent” stiffness and damping coefficients,so
that the same restoring and dissipation forces at the secondary are obtained
as if with more than one link.The modeling of such a deformable body is



summarized in Figure 2 .
If one takes now only the vibrational equation of motion ,and set the rota-

tion around a single axis b3 ji.e, 3 =603 .and if the translational acceleration
term is substituted from the translational equation, then one finds:

My 4+ (C+260JM)y+ (K +(0+ )T M)y + (8 +NJIMp=£f (1)

where J is not an inertia term,but rather an augmented symplectic matrix,

made of blocks (1] _E)l while M is a modified structure mass matrix to

account for contributions due to translation,and pis the 2n x 1 matrix compo-
nents of the vectors p; from the undeformed appendage mass centers. Here
y denotes the (2n x 1) (for planar motion or(3n x 1) for out of plane motion)
matrix of deflection coordinates of the center of mass of n appendages from
their undeformed positions,n = 2 in the case of the secondary mirror and
the spacecraft platform regarded as appendages of the primary.

f is the (2n x 1) (say, 4 x 1 here)matrix of body coordinates of external
forces acting on the centers of mass of the n appendages.

All other notations used are found in [12],{13].

Let now 7 be a new variable such that

n=M(y+p) (2)
and let i
C=CM1 (3)
K=KM! (4)
as well as
ul = (@, w?,2w) (5)

Then the vibrational equation of motion becomes:
i+ (C+us)ij+ (K +wJ +usJ?)p =1+ Kp (6)

This transformed equation can also be written in the bilinear form ,which
will be used frequertly in the following sections,

X =AX + B(X)u+b (7)

where:

+=(rh ra) ®
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0] [0]  [0]
5= (%, 7%, 7%z) ®)

and

b= [f +[U}fp] (10)

while Xjand X3 are the vector components of the state vector X = (7, 77)7.

This simplified model,insofar as the links are regarded to be mass-less ,
exibits all the coupling effects between slewing motion and vibrational mo-
tion.A distributed model under the assumption of symmetry about the mass
center also yields product terms between §2 and structural deformations, and
can be found in Chapter 9 of the book by Junkins and Turner[3]. That model
of a symmetric four appendage spacecraft can also be used to illustrate the
procedures being developed in this study,if desired, although damping must
be present, so that the matrix A above will be stable. A slewing Timo-
shenko beam model likewise exhibits this gyroscopic coupling effect, and
also accounts for damping, so that A becomes stable, as found in [4].

3 Estimation of the state by means of observers

This part of the estimation technique will deal mainly with updating the
state from sensor data.

3.1 Extended Kalman filter formulation

Usually,when one deals with a nonlinear system of which the state variables
cannot all be observed (or are corrupted with noisc) ,then the most com-
monly used method of filtering or smoothing is the extended Kalman filter
formulation [5]. Let the dynamical system be modeled as shown,

¢ = f(2)+G(z)w" + G(z)¢
{ y =h(z+v) (11)

where u” is the deterministic(mean) part of the input,£ is a zero mean input
noise,and h is defined in our case as A = (h],hT)T, where

h]() 2114_1(.—!1)
{hg(.) = M) (12)

Let Ri6(t — 7) = E[vi(t)»i(7)T] be the covariance matrix of the sensor noise
vectors v, with R = diag(Ry, Ry) and let Q6(t — v) = E[£(t)€(r)T] be



the covariance matrix of the actuator noise with v; and £ presumed to be
uncorrelated f{or simplicity.

The propagation error matrix is defined by P ,which satisfies the following
Riccati differential equation along the estimated state trajectory Z:

P= [% 2P+ P[gf 7 +G(2)QG(2)" -

i ¥/ { 1
% can be expressed as an observer,
¢ = f(2)+G@Ew + K(y-9)
. N 14
{ § =h(2) (14)

where K is the extended Kalman gain , and is defined as follows:
- oh -
K = P[a—x]Z‘GiIR ! (15)

A procedure [6] based on a change of variables, in preliminary studies gave
a faster computation time .This procedure is outlined next.

3.2 Feedback linearized procedure:

The idea is to change the state configuration of the original system ,which
has the particular form below:

1 = Fi(z1)z2
{ z; = F(z)(v* +£) + fa2) (16)

i = hi(zi 4+ n)
17
{ Y2 = ha(z2+ 12) (17)

By using the change of variables 2} = 1,24 = Fi(z1)z2,
v =, = Fy(2)u* + fo(z) and v} = h7} (1), 95 = k3 (y2) one gets
zh =z
{ 1:',2 =u*+ ¢ (18)

where £’ = F} F5£ and v] = Fyv;,s0 that the covariance of £’ is approximated
by
Q' = F(2)F(2)QF()T F(4:)" (19)
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while that for v/ is approximated by
R; = Fi(#1)R:Fy(#))7 (20)

Then the new error covariance matrix propagation is derived from the fol-
lowing Riccati differential equation:

- (8 ) rer (5 ):

(i) e m)-

? (o 1) 7 (] )7 o)

The observed deformation state is also propagated in the usual manner:
3! 0 0 "
f0=((lg @)= (i {n)eon

[0]) 1, pt 1(4y~1 (hl_l(') (0] )

P'(t,t)R'(t . { 22
() v+ Peore (B0 L9 Yy e
where the innovation process gain is now given as follows:

K'= P'(t,t,)R'(t)™? (23)

For the case of single axis slew-induced structural deformation estimation
one has F; = I and F; = lower half of B(X) defined by equation (2). In
particularone finds R, = R; ,so that,in contrast to the extended Kalman
filter,only the P'~ independent forcing term of the equation (21) given by
Q' has to be updated, all -oefficients being now constants. In dealing with
this procedure a 25% increase in speed, with comparable accuracy has been
found in preliminary simulations discussed below. The problem in using
either one of those two estimation techniques (even the faster one) in more
realistic models than the example used here, is the high dimensionality of
the filter then required, which may not be accommodated by the on-board
data processing rate, causing estimation delays.

/"' _
{ L/
. 7



3.3 Estimation Examples:

A simplified model of a beam expander was represented by a primary mirror
mass elastically linked to a secondary mirror mass according to the simpli-
fied model outlined in Section 2. Restoring forces and dissipative forces
proportional to relative secondary mirror motion were modeled at the sec-
ondary.The structural parameters are found in the companion example in
Subsection 5.1. A piecewise constant angular acceleration was commanded,
representing the acceleration—deceleration profile of a minimum time retar-
geting maneuver. The commanded angular acceleration profile was:

olt) = {0.31"(1(1.3‘2 if0<t<.5(s);
| -0.3rad.s7? if.5(s) <t < 1(s);

Presumed angular accelerometer and gyro noise covariances were trans-
formed into equivalent process noise for the feedback-linearized filter,with
the additional simplification of neglecting a square noise term correspond-
ing to the second entry u; = w? of the equivalent input u. Presumed strain
gauge sensor noises were taken from the literature. The sensor noise covari-
ance matrix was modeled as a diagonal matrix with all diagonal elements
equal to 0.00018 .Likewise the input covariance for u; was 0.000005 and for
uz was 0.00001 . The input covariance related to the input u, was supposed
to be negligible with respect to the other two. Two simulations were made
, each one of them to illustrate the two methods of estimation described
above.The first simulation was made without active bias suppression, i.e
f = 0 in equation (10), the results being shown in Figures 3, 4. The sec-
ond simulation was made with the use of bias suppression making b = 0 in
eqaution (7) by letting f = —Kp,the results being shown in Figures 5, 6.

4 Off Line Modeling

In this section the method of Optimal Bilinear System Interpolation is used.
In this technique the dynamical system is represented in in bilinear form (by
active suppression ,if needed, of the bias term b),

(24)

X = AX+ B(X)u
y =cX

where B(X) = [B3;X | B2X |...]. This also means:
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o The (I/ O) behavior is highly nonlinear.
¢ The model is high dimensional if arising from Carleman linearization.
o There is no clean ARMA model for system identification.

Then, by using optimal interpolation one finds:

o A closed form circuit~-implementable , reduced order, decoupled model
which is also bilinear:cf. Figure 7.

e (I/ O)-based system identification can be used to tune the model to
known responses to designer-selected typical excitations.

¢ The dimension of the new system model is equal to the number of test
signals.

In the present application, the model is "a priori” bilinear by the choice made
for the inputs, so that the dimension is that of the structural model, here
given by the number of mass points. For more realistic structural models,
the filter dimension would nevertheless be high. Rather than tolerate the
time delay found in the previous techniques of estimation, the method of
operator spline interpolation can be used, to find the deflection amount
between observations. The input-output (I/ O)operator V,

Viu—oy (25)

from the excitation vector u to an output vector y (such as v given by
equation (2)) is imbedded in a Hilbert space of (I/O)operators of candidate
bilinear systems, equipped with a reproducing kernel, see equation (31)

K(u,v) = exp / oT(s)R"1o(s)ds (26)

to



where the weight matrix R is determined by eigenvalues of A in equation
(24), which in the context of the present application corresponds to bounds
on the structural frequencies. An interpolator of the form

Vi(u) = Zci(t)I\'t(u, u') (27)

is constructed,tuned so that the structural responses to preselected test
inputs u' are recorded,and optimally interpolating at system level the re-
sponses to other excitations in the signal class.

If the recorded system responses y* to the test input u* are reliably known the
"tuned’ coefficients ¢; are obtained by solving the matrix equation

G(t)e(t) = 3(t) (28)

where c(t) = col{c;},¥(t) = col{y'(2)} and G(t) = {K(u',u’)},;. A more
complex matrix equation yields the ¢; for uncertain y':cf.[7), [8],[9]. The
optimization leading to the functional interpolator V, is formulated as a
minimization of the maximum distance between the interpolating operator
and any candidate operator that matches the experimental input-output
signals. If the system data are not accurate, a weighted minimization that
does not require exact matching of system responses can also be used. This
minimization is carried out in a Hilbert space of input-output operators
equipped with a weighted ”Fock space” scalar product which is the Hilbert
sum of the causal (i.e., with lower triangular domains of integration) L?
scalar products of the kernels of the Volterra series of the operators in ques-
tion,for which K is the reproducing kernel. The general method is discussed
in [9], although causality was differently implemented there,since symmetric
kernels were used.

The Hilbert space structure for m inputs(here m = 3) is defined as follows:let

hn,il,...,i"(tvtl,' o 7t'n.) = CTe.’Ep{(t - tl)A}Bil ce
...exp{(tn-1 — 1n)A} B; exp(t,A) X (0) (29)

where B(X) = [Bi(X) | B2(X)|...] and ¢3,...,i, € {1,...,m}.
These are the Volterra kernels for u;,(#),...,ui,(¢x) so long as triangu-

lar integration is used as in equation (30). Then the inner product is given
as shown ,

t ty
<Vth>=En2i1-”2inri1"'rin/ /
0 Jo
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In

hn,l’; ,...,l'n(t’ tl gerey tn)hn,i, ,...,in(t» tl Yooy tn)

dty...dty (30)

with designer—selected weights r; > 0 corresponding to R = diag{r;}, which
yields the reproducing property:

< Vi, Ky(u,.) >= Vi(u) (31)

The Volterra series for a bilinear system will yield a bounded norm < Vi, Ve >
provided the weights r; are chosen so that

2a

Ziril|Bil? < N

(32)

where N = dimX and "a” is a bound on the real parts of the eigenvalues
of A, so that |lexp(At)|]® < N.exp(—2at) . The bound (32) is obtained af-
ter cancellation of intermediate exponents in the factors exp{—2a(ti-1 - t;},

which can be interchanged when computing L2 bounds of iy, in(B 215 - oy t)l,

to guarantee negativity of the remaining exponential coefficients. The same
bound is sufficient for having |§(2)] = |Vi(u)] — 0 as t — oo when u is
L? (Square integrable) , as is found by use of the reproducing property (31)
(Lower bounds are also needed when the inputs are not L? ,but are bounded
almost everywhere:Dwyer,[7]). The advantages of such modeling are:

o The model dimension is equal to the number of test inputs.

¢ The modeling error is distributed throughout the chosen input sig-
nal class (i.e by frequency or amplitude), rather than depending on
nearness to a single reference input.

 The interpolated signal(response) can be proven to converge asymp-
totically to the true system response for any (unknown) excitation in
the chosen signal class.

In this technique of modeling,the real data "), () can be recorded by ex-
citing the real system with (constant or nonconstant)test inputs to construct
the interpolator.The test inputs can be chosen to approximate the expected
excitations of the system. Thus, the real system time responses are used for
model matching, rather than responses synthesized from the mathematical



model.

The problem with this technique, however, lies in the fact that storage of
curves is required in order to compute the ¢;’s . The number of stored curves
is equal to m X k x IV, where m is the number of test inputs,k is the di-
mension of the output vector y, N the dimension of the state to be modeled
and [ is the number of possible initial values of each component.This diffi-
culty does not allow the system to run in real time: e.g.for the case of n
point masses linked by massless but elastic connections one has N = 2n and
k = n when measuring deflections or k = N = 2n if full state information is
required in the planar motion case.

S5 Interpolator—Based Estimation:

In this section, the two last techniques are combined to create a more effec-
tive one by making use of the transition matrix spline of the bilinear system
of the model:

ﬁ(t) = &)(tatk)ﬁ(t’tk) (33)

In fact, the matrix-valued operator spline ® interpolates the transition ma-
trices ®; corresponding to the bilinear system model excited by constant
or piecewise constant test inputs (). This permits the construction of the
response of the real time system in piecewise closed form,thereby replacing
response curve storage by an analytic transition matrix generator, rather
than the construction of the coefficients interpolator ¢;from the output test
signals yT = (¢,%%,...,4™).

One gets each entry ¢’ of the matrix valued spline coefficients ¢; by let-
ting §* = ®F7 in equation (28) where ®%is the (p,g)-entry in the transition
matrix with constant () :

d, = exp{(A+ ZBjugi))t} (34)

The interpolated transition matrix is then used to update between obser-
vations the structural state estimates obtained from an adaptive covariance
filter based on a globally feedback-linearized transformation(seen in Section
3.2) of the bilinear structural model.
This last technique has the following features:

o & is open loop, with 7 made to match the real system at discrete
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intervals by re-initializing:

’:7(‘)] = $(t,t ’:7("‘)] 35

[ i) ) = 20 5a,) (33
In contrast,the direct modeling of the I/O operator
t .

fi= Zc;(t)ezp/ uT R~ Vu'dt (36)

continuously tracks the true system time responses #'(t),but in this case
ci(t) cannot be generated analytically and must be computed off-line.

o The presence of an additive input does not give rise to a steady state
tracking error observed in the earlier literature when additive as well as
multiplicative inputs are present, as is the case for rapidly slewing struc-
tures.Indeed, a convolution correction based on & can be added, eliminating
the need for active suppression of the bias term b in equation (7).

¢ The number of curves to be generated is only m x N? instead of
m X k x IV (where again N = 2n for the example of a structure composed
of point masses connected by elastic appendages and in plane motion).

¢ The possibly high dimensional recursive filter can run at a slower sam-
pling rate chosen to be consistent with on board CPU capabilities.

5.1 Interpolation Example

An interpolator was designed for the same two bodies beam expander model
previously described: The interpolator was optimized for input vectors u7 =
(u1,u2,u3) of the form (constant, 0,0), (0,constant,0) and (0,0, constant)
,chosen with a positive constant during the first half of a 1 second nominal
minimum time rotation, and negative during the second half, for the first
test input vector.The same positive constant was chosen throughout the 1
second repointing for the second and third test input vectors, this qualita-
tively correspond to the nominal angular motion where & is a square wave
beginning at +0.3 and reversing, which yields positive (though not constant)
values for w; and 2w :cf.Eq.(5). The constants were selected for boundedness
of the interpolator according to [7],[8]. For the sake of convergence of the
interpolator to the actual output of the system, and in the case of applying
test inputs which are not square integrable ,the matrix R described above
in the reproducing kernel analvtical form should have diagonal elements
satisfying the following condition:

a/m - \/(a/m)? - | BIPNAZ <




rN||Bi||* <

a/m+\/(a/m)2— || Bill2N A2 37)
If Ais N x N,||Bi||?> = L, b?,, where b; g is the (p,¢) element of B;, then

1,pg
Ai, which is the upper limit of the i-th test input component, must be chosen

to satisfy the bounds below,

0< X < a/mvVN| B (38)

where a is an upper bound on the real parts of the eigenvalues of the matrix
A ,and m is the number of test inputs applied to the interpolator. Indeed,
the bound (41) allows selecting positive ris in the inequality (37), which
itself occurs in obtaining bounds on §(t) = Vi(u) from equation (34), to
guarantee §(t) — 0 :cf.[6]

In case the applied test inputs are square integrable, as will be chosen on
the example, one needs only a simpler form of bounds for r; described as
follows,which implies the inequality (32) if all r; are the same,

0 < rN||Bi||* < 2a/m (39)

The data used to drive this example are very near to those of a space
based laser model:

Jo = 20,556kg.m2, m® = 10,720kg, m! = 152kg, p' = (0,14.421m)7T

K__(1642 121.6) C__(162 120
~\121.6 13558/’ T \120 1357

The nondiagonal form of the above matrices K and C is due to the fact that
the two links that hold the small mirror in the top can be regarded as an
equivalent link with equivalent stiffness and damping matrices ,as shown in
[13].

Now by applying those data to the system and by the choice of constant = .3
in the test inputs, one finds 0 < r; < 1/12 where r; = r for all 7, giving
R = diag(r;) = r[I}mxm -Two scries of simulations were made. In each
one of them two alternatives , namely, bias elimination ,i.e., b = 0 or no
external tip forces ,i.e, f = 0 are considered. In the first series of simulations
the interpolator was used over the entire minimum time 1second maneuver
and thereafter. The results for the case of lateral deflection of the appendage
are shown in Figures 8,9. It is important to notice here that in case of
bias presence, a numerical convolution product was used with the original
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transition matrix ®(¢,2) as well as with the interpolated transition matrix
®(1,1;) for the sake of error comparisons.” Original” in the plots means the
numerical solution of Eq.(1) , "discrete” means the numerical computation
of ®4(1,0)z(0) + ®,(t,.) * b. One last numerical diffuculty was observed, in
addition to care needed in generating the contribution from b by convolution
(at least in this unusual beam expander example). That was the singular-
ity of Eq.(28) at t=0 as already discussed in [9],which caused numerical
unreliability during the first 0.25 seconds of this motion. Thus "transient
error” is consistent with the "adaptive” nature of the interpolator which
must "learn” from the system resonse to alleviate this numerical diffuculty,
in the other series the state estimated in the example of section 3.3 was
used to re-initialize the interpolator each .5s The results are shown in Fig-
ures 10,11. The re-initialization from the estimated state at given moments
yielded better results than when using the same interpolator throughout.

6 Concluding Remarks

Filter alghorithms combine the propagation of measurements "between” ob-
servations with updating of measurements "across” observations. Such up-
dating to account for new observations has been shown here to be obtainable
from an estimator based on a globally feedback-linearized model of a nou-
linear process.

In case nonlinear transformation of the observed part of the process
state is required , it was shown that the associated matrix Riccati differen-
tial equation for the propagation of the estimation error covariance needs
to be updated only in its "driving” term, givea by the process noise co-
variance . In contrast, all the coefficients of the Ricatti equation for the
corresponding extended Kalman filter must be updated, so that consider-
able CPU time is saved by pre-linearization, although the filter dimension
is the same. Dimension reduction between measurements is therefore still
desirable, motivating the next part of this work, which is reviewed below.
If the process dynamics is ”parametrically excited”, e.g. by gyroscopic cou-
pling, it was then shown how the process state can be propagated between
observations by interpolation of the input-output operator that maps the
process excitation to the (time-varying) state transition matrix. This inter-
polator was shown to be simultaneously optimized to match the measured
system response to a set of pre-selected "test inputs”, which if chosen piece-
wise constant can also be encoded analytically in closed form.

Since the interpolator dimension is determined by the dimension of the pro-



cess state ,it is therefore faster to periodically re-start the interpolator at
the rate the feedback linearized filter( or any other) can process full state in-
formation, rather than be tied down to the full order filter processing rate.
New results were then given on the application of the method to the on-
line estimation of transverse deflections of a rapidly slewing, gyroscopically
slew-coupled beam expander,previously reported in [12]. Applications to
line of sight disturbance error bound estimation in sliding control following
[10] are also outlined in [11]. the interpolation technique may also be used
to update observations for multi-axis motion of multibody systems , but
this latter work is still undeveloped.
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Feedbock Linearized Procedure
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